Convergence of the Proximal Point Method for Metrically Regular Mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of the Proximal Point Method for Metrically Regular Mappings

In this paper we consider the following general version of the proximal point algorithm for solving the inclusion T (x) 3 0, where T is a set-valued mapping acting from a Banach space X to a Banach space Y . First, choose any sequence of functions gn : X → Y with gn(0) = 0 that are Lipschitz continuous in a neighborhood of the origin. Then pick an initial guess x0 and find a sequence xn by appl...

متن کامل

Uniformity and Inexact Version of a Proximal Method for Metrically Regular Mappings

We study stability properties of a proximal point algorithm for solving the inclusion 0 ∈ T (x) when T is a set-valued mapping that is not necessarily monotone. More precisely we show that the convergence of our algorithm is uniform, in the sense that it is stable under small perturbations whenever the set-valued mapping T is metrically regular at a given solution. We present also an inexact pr...

متن کامل

An Inverse Function Theorem for Metrically Regular Mappings

We prove that if a mapping F : X → → Y , where X and Y are Banach spaces, is metrically regular at x̄ for ȳ and its inverse F−1 is convex and closed valued locally around (x̄, ȳ), then for any function G : X → Y with lipG(x̄) · regF (x̄ | ȳ)) < 1, the mapping (F + G)−1 has a continuous local selection x(·) around (x̄, ȳ + G(x̄)) which is also calm.

متن کامل

Convergence of the Proximal Point Method for Quasiconvex Minimization

This paper extends the full convergence of the classic proximal point method to solve continuous quasiconvex minimization problems in Euclidian spaces. Under the assumption that the global minimizer set is nonempty we prove the full convergence of the sequence generated by the method to a certain generalized critical point of the problem.

متن کامل

Graph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem

In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Proceedings

سال: 2007

ISSN: 1270-900X

DOI: 10.1051/proc:071701